
PYTHON PROGRAMMING - IIPYTHON PROGRAMMING - II

Unit - 2

Python

Exception Handling

and

Regular Expression

By-

Prof. A. P. Chaudhari

(M.Sc. Computer Science, SET)

HOD,

Department of Computer Science

S.V.S’s Dadasaheb Rawal College,

Dondaicha

Introduction

Exception can be said to be any abnormal condition in a program

resulting to the disruption in the flow of the program.

Whenever an exception occurs the program halts the execution and

thus further code is not executed. Thus exception is that error which python

script is unable to tackle with.

Exception in a code can also be handled. In case it is not handled,

then the code is not executed further and hence execution stops when

exception occurs.

Common Exceptions

• ZeroDivisionError: Occurs when a number is divided by zero.

• NameError: It occurs when a name is not found. It may be local or global.

• IndentationError: If incorrect indentation is given.

• IOError: It occurs when Input Output operation fails.

• EOFError: It occurs when end of the file is reached and yet operations are

being performed. etc..

Handling Exception:

The suspicious code can be handled by using the try block. Enclose

the code which raises an exception inside the try block. The try block is

followed except statement. It is then further followed by statements which

are executed during exception and in case if exception does not occur.

Syntax:

try:

malicious code

except Exception1:

execute code

except Exception2:

execute code

....

....

except ExceptionN:

execute code

else:

In case of no exception, execute the else block code.

Example:

try:

a=10/0

print a

except ArithmeticError:

print "This statement is raising an exception"

else:

print "Welcome"

Output:

This statement is raising an exception

Handling Exception:

Python Exception(Except with no Exception) Example:

Except statement can also be used without specifying Exception.

Syntax:

try:

code

except:

code to be executed in case exception occurs.

else:

code to be executed in case exception does not occur.

Example:

try:

a=10/0;

except: Output:

print "Arithmetic Exception“ Arithmetic Exception

else:

print "Successfully Done"

Handling Exception:

Declaring Multiple Exception in Python

Python allows us to declare multiple exceptions using the same

except statement.

Syntax:

try:

code

except Exception1,Exception2,Exception3,..,ExceptionN

execute this code in case any Exception of these occur.

else:

execute code in case no exception occurred.

Example:

try: Output:

a=10/0; Arithmetic Exception

except ArithmeticError, StandardError:

print "Arithmetic Exception"

else:

print "Successfully Done"

Multiple Except Clauses:

Finally Block:

In case if there is any code which the user want to be executed, whether

exception occurs or not then that code can be placed inside the finally block.

Finally block will always be executed irrespective of the exception.

Syntax:

try:

Code

finally:

code which is must to be executed.

Example

try:

a=10/0;

print "Exception occurred"

finally:

print "Code to be executed"

In the above example finally block is executed. Since exception is not handled

therefore exception occurred and execution is stopped.

try … finally:

Output:

>>>

Code to be executed

Traceback (most recent call last):

File "C:/Python27/noexception.py", line 2, in <module>

a=10/0;

ZeroDivisionError: integer division or modulo by zero

>>>

You can explicitly throw an exception in Python using ?raise?

statement. raise will cause an exception to occur and thus execution

control will stop in case it is not handled.

There are three forms of the raise statement:

raise

raise E1

raise E1, E2

Syntax:

raise Exception_class,<value>

Example: Output:

try: 10

a=10 An exception occurred

print a Hello

raise NameError("Hello")

except NameError as e:

print "An exception occurred"

print e

Raising Exception:

Raising Exception:

i) To raise an exception, raise statement is used. It is followed by

exception class name.

ii) Exception can be provided with a value that can be given in the

parenthesis. (here, Hello)

iii)To access the value "as" keyword is used. "e" is used as a reference

variable which stores the value of the exception.

User Defined Exception:

Creating your own Exception class or User Defined Exceptions

are known as Custom Exception.

Example

class ErrorInCode(Exception):

def __init__(self, data):

self.data = data

def __str__(self):

return repr(self.data)

try:

raise ErrorInCode(2000)

except ErrorInCode as ae:

print "Received error:", ae.data

Output:

>>>

Received error : 2000

>>>

List of Standard Exceptions:

Sr.No. Exception Name & Description

1 Exception

Base class for all exceptions

2 StopIteration

Raised when the next() method of an iterator does not point to any object.

3 SystemExit

Raised by the sys.exit() function.

4 StandardError

Base class for all built-in exceptions except StopIteration and SystemExit.

5 ArithmeticError

Base class for all errors that occur for numeric calculation.

6 OverflowError

Raised when a calculation exceeds maximum limit for a numeric type.

7 FloatingPointError

Raised when a floating point calculation fails.

8 ZeroDivisionError

Raised when division or modulo by zero takes place for all numeric types.

9 AssertionError

Raised in case of failure of the Assert statement.

List of Standard Exceptions:
10 AttributeError

Raised in case of failure of attribute reference or assignment.

11 EOFError

Raised when there is no input from either the raw_input() or input() function and

the end of file is reached.

12 ImportError

Raised when an import statement fails.

13 KeyboardInterrupt

Raised when the user interrupts program execution, usually by pressing Ctrl+c.

14 LookupError

Base class for all lookup errors.

15 IndexError

Raised when an index is not found in a sequence.

16 KeyError

Raised when the specified key is not found in the dictionary.

17 NameError

Raised when an identifier is not found in the local or global namespace.

18 UnboundLocalError

Raised when trying to access a local variable in a function or method but no

value has been assigned to it.

List of Standard Exceptions:
19 EnvironmentError

Base class for all exceptions that occur outside the Python environment.

20 IOError

Raised when an input/ output operation fails, such as the print statement or the

open() function when trying to open a file that does not exist.

21 OSError

Raised for operating system-related errors.

22 SyntaxError

Raised when there is an error in Python syntax.

23 IndentationError

Raised when indentation is not specified properly.

24 SystemError

Raised when the interpreter finds an internal problem, but when this error is

encountered the Python interpreter does not exit.

25 SystemExit

Raised when Python interpreter is quit by using the sys.exit() function. If not

handled in the code, causes the interpreter to exit.

26 TypeError

Raised when an operation or function is attempted that is invalid for the specified

data type.

List of Standard Exceptions:

27 ValueError

Raised when the built-in function for a data type has the valid type of

arguments, but the arguments have invalid values specified.

28 RuntimeError

Raised when a generated error does not fall into any category.

29 NotImplementedError

Raised when an abstract method that needs to be implemented in an

inherited class is not actually implemented.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

